Characterization of fabrication process noises for 32nm NMOS devices

This paper describes the effect of fabrication process noises to Sub-nanometer devices, which in this case a 32nm NMOS transistor. This experiment a part of a full Taguchi Method analysis to obtain an optimum fabrication recipe for the said transistor. The two noises introduced in the fabrication is...

Full description

Saved in:
Bibliographic Details
Main Authors: Elgomati, H.A., Majlis, B.Y., Ahmad, I., Ziad, T.
Format:
Published: 2017
Online Access:http://dspace.uniten.edu.my:8080/jspui/handle/123456789/5248
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the effect of fabrication process noises to Sub-nanometer devices, which in this case a 32nm NMOS transistor. This experiment a part of a full Taguchi Method analysis to obtain an optimum fabrication recipe for the said transistor. The two noises introduced in the fabrication is ±1°C variation in sacrificial oxide layer growth by diffusion temperature and also silicide compress annealing temperature. In this project, a working 32 NMOS transistor fabrication is used. By increasing the sacrificial oxide layer diffusion temperature from 900°C to 901°C, the reference 32nm NMOS transistor threshold voltage (VTH) jumps from 0.1181V to 0.1394V, while leakage current drops from 0.111mA/um to 0.109 mA/um. By decreasing the silicide compress temperature from 910°C to 909°C, threshold voltage increase slightly from 0.118053V to 0.118068V, This shows a very different in magnitude of effect from same degree of noise introduce to the fabrication process. © 2010 IEEE.