Laplace based approximate posterior inference for differential equation models
Ordinary differential equations are arguably the most popular and useful mathematical tool for describing physical and biological processes in the real world. Often, these physical and biological processes are observed with errors, in which case the most natural way to model such data is via regress...
Saved in:
Main Authors: | Dass, S.C., Lee, J., Lee, K., Park, J. |
---|---|
格式: | Article |
出版: |
Springer New York LLC
2017
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961615481&doi=10.1007%2fs11222-016-9647-0&partnerID=40&md5=d758663601ac280ee350e0e7a75f3a05 http://eprints.utp.edu.my/19515/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Bayesian inference using two-stage Laplace approximation for differential equation models
由: Dass, S.C., et al.
出版: (2016) -
Inference for differential equation models using relaxation via dynamical systems
由: Lee, K., et al.
出版: (2018) -
Inference for differential equation models using relaxation via dynamical systems
由: Lee, K., et al.
出版: (2018) -
Laplace Transform With Modified Analytical Approximate Methods For Fractional Differential Equations
由: Jaber, Hailat Ibrahim Yousef
出版: (2022) -
Some remarks on the Sumudu and Laplace transforms and applications to differential equations
由: Kilicman, Adem, et al.
出版: (2012)