Laplace based approximate posterior inference for differential equation models
Ordinary differential equations are arguably the most popular and useful mathematical tool for describing physical and biological processes in the real world. Often, these physical and biological processes are observed with errors, in which case the most natural way to model such data is via regress...
保存先:
主要な著者: | Dass, S.C., Lee, J., Lee, K., Park, J. |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer New York LLC
2017
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961615481&doi=10.1007%2fs11222-016-9647-0&partnerID=40&md5=d758663601ac280ee350e0e7a75f3a05 http://eprints.utp.edu.my/19515/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Bayesian inference using two-stage Laplace approximation for differential equation models
著者:: Dass, S.C., 等
出版事項: (2016) -
Inference for differential equation models using relaxation via dynamical systems
著者:: Lee, K., 等
出版事項: (2018) -
Inference for differential equation models using relaxation via dynamical systems
著者:: Lee, K., 等
出版事項: (2018) -
Laplace Transform With Modified Analytical Approximate Methods For Fractional Differential Equations
著者:: Jaber, Hailat Ibrahim Yousef
出版事項: (2022) -
Some remarks on the Sumudu and Laplace transforms and applications to differential equations
著者:: Kilicman, Adem, 等
出版事項: (2012)