A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection
This paper presents a novel supervised machine learning-based electric theft detection approach using the feature engineered-CatBoost algorithm in conjunction with the SMOTETomek algorithm. Contrary to the previous literature, where the missing observations in data are either ignored or imputed with...
محفوظ في:
المؤلفون الرئيسيون: | Hussain, Saddam, Mustafa, Mohd. Wazir, A. Jumani, Touqeer, Baloch, Shadi Khan, Alotaibi, Hammad, Khan, Ilyas, Khan, Afrasyab |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier Ltd
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/95358/1/SaddamHussain2021_ANovelFeatureEngineeredCatBoost.pdf http://eprints.utm.my/id/eprint/95358/ http://dx.doi.org/10.1016/j.egyr.2021.07.008 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A novel unsupervised feature‐based approach for electricity theft detection using robust PCA and outlier removal clustering algorithm
بواسطة: Hussain, Saddam, وآخرون
منشور في: (2020) -
Innovative Computational PSO-EBGWO-CatBoost Approach for Assessing Loan Risks
بواسطة: Suihai, Chen, وآخرون
منشور في: (2024) -
Electric theft detection using unsupervised machine learning-based matrix profile and K-means clustering technique
بواسطة: Hussain, Saddam, وآخرون
منشور في: (2022) -
Electric theft detection using unsupervised machine learning-based matrix profile and K-means clustering technique
بواسطة: Hussain, Saddam, وآخرون
منشور في: (2022) -
Classification of Mental Health Care Using the ELM, MLP, and CatBoost
Stacking Framework
بواسطة: Noor, Azijah, وآخرون
منشور في: (2024)