A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection
This paper presents a novel supervised machine learning-based electric theft detection approach using the feature engineered-CatBoost algorithm in conjunction with the SMOTETomek algorithm. Contrary to the previous literature, where the missing observations in data are either ignored or imputed with...
保存先:
主要な著者: | , , , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier Ltd
2021
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/95358/1/SaddamHussain2021_ANovelFeatureEngineeredCatBoost.pdf http://eprints.utm.my/id/eprint/95358/ http://dx.doi.org/10.1016/j.egyr.2021.07.008 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|