Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects

This study addresses the mechanics of the relatively brittle solder/intermetallic (IMC) interface fracture process using damage mechanics concept. The damage state, ¿ of a material point in the solder/IMC interface, is expressed in terms of orthogonal traction components in a quadratic failure crit...

Full description

Saved in:
Bibliographic Details
Main Authors: Tamin, Mohd. Nasir, Bo, Lai Zheng, Keat, Loh Wei
Format: Conference or Workshop Item
Published: 2009
Subjects:
Online Access:http://eprints.utm.my/id/eprint/15026/
http://dx.doi.org/10.1109/EPTC.2009.5416455
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.15026
record_format eprints
spelling my.utm.150262020-07-20T01:23:45Z http://eprints.utm.my/id/eprint/15026/ Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects Tamin, Mohd. Nasir Bo, Lai Zheng Keat, Loh Wei TJ Mechanical engineering and machinery This study addresses the mechanics of the relatively brittle solder/intermetallic (IMC) interface fracture process using damage mechanics concept. The damage state, ¿ of a material point in the solder/IMC interface, is expressed in terms of orthogonal traction components in a quadratic failure criterion of a cohesive zone model. The model is then employed in a finite element analysis of a solder ball shear push test. The simulated test specimen consists of reflowed SAC405 solder-on-OSP copper pad and orthotropic FR4 substrate. Unified inelastic strain constitutive model with optimized material parameters describes the strain rate-response of the SAC405 solder. The cohesive zone model parameter values are compiled from published experimental data on SAC405 solder ball pull tests and shear push tests. The predicted shear tool force-displacement curve compared well with published experimental data. The normal-to-shear traction ratio at the onset of interface fracture is 1.59 indicating significant induced bending effect due to shear tool clearance. Rapid interface crack propagation is predicted following the initiation of crack with the average crack speed up to 24.6 times the applied shear tool speed at 3000 mm/sec. The progressive boundary between damaged (¿<1.0) and fractured (¿=1.0) interface is interpreted as the interface crack front. The high stress concentration along the edge of the solder/IMC interface facilitates local crack initiation and dictates the shape of the dynamic crack front. 2009 Conference or Workshop Item PeerReviewed Tamin, Mohd. Nasir and Bo, Lai Zheng and Keat, Loh Wei (2009) Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects. In: 11th Electronics Packaging Technology Conferenre (EPTC 2009), 2009, Hotel Shangri-La, Singapura. http://dx.doi.org/10.1109/EPTC.2009.5416455
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Tamin, Mohd. Nasir
Bo, Lai Zheng
Keat, Loh Wei
Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
description This study addresses the mechanics of the relatively brittle solder/intermetallic (IMC) interface fracture process using damage mechanics concept. The damage state, ¿ of a material point in the solder/IMC interface, is expressed in terms of orthogonal traction components in a quadratic failure criterion of a cohesive zone model. The model is then employed in a finite element analysis of a solder ball shear push test. The simulated test specimen consists of reflowed SAC405 solder-on-OSP copper pad and orthotropic FR4 substrate. Unified inelastic strain constitutive model with optimized material parameters describes the strain rate-response of the SAC405 solder. The cohesive zone model parameter values are compiled from published experimental data on SAC405 solder ball pull tests and shear push tests. The predicted shear tool force-displacement curve compared well with published experimental data. The normal-to-shear traction ratio at the onset of interface fracture is 1.59 indicating significant induced bending effect due to shear tool clearance. Rapid interface crack propagation is predicted following the initiation of crack with the average crack speed up to 24.6 times the applied shear tool speed at 3000 mm/sec. The progressive boundary between damaged (¿<1.0) and fractured (¿=1.0) interface is interpreted as the interface crack front. The high stress concentration along the edge of the solder/IMC interface facilitates local crack initiation and dictates the shape of the dynamic crack front.
format Conference or Workshop Item
author Tamin, Mohd. Nasir
Bo, Lai Zheng
Keat, Loh Wei
author_facet Tamin, Mohd. Nasir
Bo, Lai Zheng
Keat, Loh Wei
author_sort Tamin, Mohd. Nasir
title Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
title_short Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
title_full Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
title_fullStr Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
title_full_unstemmed Damage mechanics of solder/IMC interface fracture in pb-free solder interconnects
title_sort damage mechanics of solder/imc interface fracture in pb-free solder interconnects
publishDate 2009
url http://eprints.utm.my/id/eprint/15026/
http://dx.doi.org/10.1109/EPTC.2009.5416455
_version_ 1674066109400088576
score 13.211869