Effects of argon/nitrogen sputtering gas on the microstructural, crystallographic and piezoelectric properties of AlN thin films
The growth of highly crystalline c-plane AlN �002� is extremely difficult, entailing high temperature and ultra-high vacuum condition. In sputtering technique, the addition of nitrogen into argon sputtering gas can significantly assist the formation of AlN �002� at low temperature. We incorporated p...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Acta Materialia Inc
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth of highly crystalline c-plane AlN �002� is extremely difficult, entailing high temperature and ultra-high vacuum condition. In sputtering technique, the addition of nitrogen into argon sputtering gas can significantly assist the formation of AlN �002� at low temperature. We incorporated purified nitrogen gas and observed the consistent formation of single crystal �002� AlN thin film layer sputter-deposited on Mo/Si substrate from the AlN ceramic target. Small presence of oxygen content within AlN crystal relates to the preferential growth of AlN �002�. High oxygen content in AlN thin film due to the use of unpurified nitrogen and argon only sputtering gas prefers the formation of AlN �100�. Different AlN crystal structure has shown distinct thin film properties and piezoelectric response. This work provides a method to control the crystal structure of the sputter-deposited AlN thin film layer, either c-plane AlN �002�, a-plane AlN �100� or polycrystalline AlN. � 2022 Acta Materialia Inc. |
---|