Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction
The classification of environmental sounds is important for emerging applications such as automatic audio surveillance, audio forensics, and robot navigation. Existing techniques combined multiple features and stacked many CNN layers (very deep learning) to reach the desired accuracy. Instead of usi...
Saved in:
Main Authors: | , , |
---|---|
格式: | Article |
語言: | English English |
出版: |
Springer Nature
2021
|
主題: | |
在線閱讀: | http://irep.iium.edu.my/90215/7/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks_SCOPUS.pdf http://irep.iium.edu.my/90215/8/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks.pdf http://irep.iium.edu.my/90215/ https://link.springer.com/article/10.1007/s00521-021-06091-7 https://doi.org/10.1007/s00521-021-06091-7 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!