Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction

The classification of environmental sounds is important for emerging applications such as automatic audio surveillance, audio forensics, and robot navigation. Existing techniques combined multiple features and stacked many CNN layers (very deep learning) to reach the desired accuracy. Instead of usi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Al-Hattab, Yousef Abd, Mohd Zaki, Hasan Firdaus, Shafie, Amir Akramin
格式: Article
語言:English
English
出版: Springer Nature 2021
主題:
在線閱讀:http://irep.iium.edu.my/90215/7/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks_SCOPUS.pdf
http://irep.iium.edu.my/90215/8/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks.pdf
http://irep.iium.edu.my/90215/
https://link.springer.com/article/10.1007/s00521-021-06091-7
https://doi.org/10.1007/s00521-021-06091-7
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!