Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction

The classification of environmental sounds is important for emerging applications such as automatic audio surveillance, audio forensics, and robot navigation. Existing techniques combined multiple features and stacked many CNN layers (very deep learning) to reach the desired accuracy. Instead of usi...

詳細記述

保存先:
書誌詳細
主要な著者: Al-Hattab, Yousef Abd, Mohd Zaki, Hasan Firdaus, Shafie, Amir Akramin
フォーマット: 論文
言語:English
English
出版事項: Springer Nature 2021
主題:
オンライン・アクセス:http://irep.iium.edu.my/90215/7/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks_SCOPUS.pdf
http://irep.iium.edu.my/90215/8/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks.pdf
http://irep.iium.edu.my/90215/
https://link.springer.com/article/10.1007/s00521-021-06091-7
https://doi.org/10.1007/s00521-021-06091-7
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!