Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction

The classification of environmental sounds is important for emerging applications such as automatic audio surveillance, audio forensics, and robot navigation. Existing techniques combined multiple features and stacked many CNN layers (very deep learning) to reach the desired accuracy. Instead of usi...

全面介绍

Saved in:
书目详细资料
Main Authors: Al-Hattab, Yousef Abd, Mohd Zaki, Hasan Firdaus, Shafie, Amir Akramin
格式: Article
语言:English
English
出版: Springer Nature 2021
主题:
在线阅读:http://irep.iium.edu.my/90215/7/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks_SCOPUS.pdf
http://irep.iium.edu.my/90215/8/90215_Rethinking%20environmental%20sound%20classification%20using%20convolutional%20neural%20networks.pdf
http://irep.iium.edu.my/90215/
https://link.springer.com/article/10.1007/s00521-021-06091-7
https://doi.org/10.1007/s00521-021-06091-7
标签: 添加标签
没有标签, 成为第一个标记此记录!

相似书籍