COMPARATIVE STUDY OF SURROGATE TECHNIQUES FOR HYPERPARAMETER OPTIMIZATION IN CONVOLUTIONAL NEURAL NETWORK

Optimizing hyperparameters in CNN is tedious for many researchers and practitioners. it requires a high degree of expertise or a lot of experience to optimize the hyperparameter and such manual optimization is likely to be biased. Hyperparameters in deep learning can be divided into two types which...

詳細記述

保存先:
書誌詳細
第一著者: MOHD ASZEMI, NURSHAZLYN
フォーマット: 学位論文
言語:English
出版事項: 2023
主題:
オンライン・アクセス:http://utpedia.utp.edu.my/id/eprint/24632/1/NurshazlynMohdAszemi_17007352.pdf
http://utpedia.utp.edu.my/id/eprint/24632/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!