COMPARATIVE STUDY OF SURROGATE TECHNIQUES FOR HYPERPARAMETER OPTIMIZATION IN CONVOLUTIONAL NEURAL NETWORK
Optimizing hyperparameters in CNN is tedious for many researchers and practitioners. it requires a high degree of expertise or a lot of experience to optimize the hyperparameter and such manual optimization is likely to be biased. Hyperparameters in deep learning can be divided into two types which...
保存先:
第一著者: | |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2023
|
主題: | |
オンライン・アクセス: | http://utpedia.utp.edu.my/id/eprint/24632/1/NurshazlynMohdAszemi_17007352.pdf http://utpedia.utp.edu.my/id/eprint/24632/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|