Comparative Study of Surrogate Techniques for CNN Hyperparameter Optimization

Optimizing hyper parameters in Convolutional Neural networks is a tedious process for many researchers and practitioners. It requires a high degree of expertise or experience to optimise the hyper parameters, and manual optimisation is likely to be biased. To date, methods or approaches to automate...

詳細記述

保存先:
書誌詳細
主要な著者: Mohd Aszemi, Nurshazlyn, M. Zakaria, Nordin, Paneer Selvam, Dhanapal Durai Dominic
フォーマット: Book Section
言語:English
出版事項: Computing & Intelligent Systems, SCRS 2022
主題:
オンライン・アクセス:http://utpedia.utp.edu.my/id/eprint/24082/1/Comparative%20Study%20of%20Surrogate%20Techniques%20for%20CNN%20Hyperparameter%20Optimization.pdf
https://doi.org/10.52458/978-81-95502-00-4-48
http://utpedia.utp.edu.my/id/eprint/24082/
https://www.publications.scrs.in/chapter/978-81-95502-00-4/48
https://doi.org/10.52458/978-81-95502-00-4-48
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!