Fine-tuned Surface Object Detection Applying Pre-trained Mask R-CNN Models
This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Pre...
Saved in:
Main Authors: | Fujita, H., Itagaki, M., Ichikawa, K., Hooi, Y.K., Kawahara, K., Sarlan, A. |
---|---|
格式: | Conference or Workshop Item |
出版: |
Institute of Electrical and Electronics Engineers Inc.
2020
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097532534&doi=10.1109%2fICCI51257.2020.9247666&partnerID=40&md5=2758293eafa9dbd7d5a0e244112984ec http://eprints.utp.edu.my/29862/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
d Weed Recognition in Agriculture Using
Mask R-CNN
由: Thah Lieng Kang, -
出版: (2022) -
Red blood cells classification with sharpening segmentation and mask R-CNN
由: Arianti, Nunik Destria, et al.
出版: (2023) -
Pre-trained language model with feature reduction and no fine-tuning
由: Kit, Y. H., et al.
出版: (2022) -
Pre-trained language model with feature reduction and no fine-tuning
由: Kit, Y. H., et al.
出版: (2022) -
Fine-tuning Multilingual Transformers for Hausa-English Sentiment Analysis
由: Yusuf, A., et al.
出版: (2023)