Fine-tuned Surface Object Detection Applying Pre-trained Mask R-CNN Models

This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Pre...

詳細記述

保存先:
書誌詳細
主要な著者: Fujita, H., Itagaki, M., Ichikawa, K., Hooi, Y.K., Kawahara, K., Sarlan, A.
フォーマット: Conference or Workshop Item
出版事項: Institute of Electrical and Electronics Engineers Inc. 2020
オンライン・アクセス:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097532534&doi=10.1109%2fICCI51257.2020.9247666&partnerID=40&md5=2758293eafa9dbd7d5a0e244112984ec
http://eprints.utp.edu.my/29862/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Precisions and Average Recalls. Result indicates a substantial false negatives or "left judgement"counts for linear cracks, joints, fillings, potholes, stains, shadows and patching with grid cracks classes. There were significant number of incorrectly predicted label instances. To improve the result, an alternative metric calculation method was tested. However, the results showed strong mutual interferences caused by misinterpretation of the scratches with other object classes. © 2020 IEEE.