A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption

Saved in:
Bibliographic Details
Main Authors: Chiroma, H., Abdullahi, U.A., Hashem, I.A.T., Saadi, Y., Al-Dabbagh, R.D., Ahmad, M.M., Dada, G.E., Danjuma, S., Maitama, J.Z., Abubakar, A., Abdulhamid, S.�M.
Format: Article
Published: Springer Verlag 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37
http://eprints.utp.edu.my/24179/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.24179
record_format eprints
spelling my.utp.eprints.241792021-08-19T15:27:25Z A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption Chiroma, H. Abdullahi, U.A. Hashem, I.A.T. Saadi, Y. Al-Dabbagh, R.D. Ahmad, M.M. Dada, G.E. Danjuma, S. Maitama, J.Z. Abubakar, A. Abdulhamid, S.�M. Springer Verlag 2019 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37 Chiroma, H. and Abdullahi, U.A. and Hashem, I.A.T. and Saadi, Y. and Al-Dabbagh, R.D. and Ahmad, M.M. and Dada, G.E. and Danjuma, S. and Maitama, J.Z. and Abubakar, A. and Abdulhamid, S.�M. (2019) A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption. Green Energy and Technology . pp. 1-20. http://eprints.utp.edu.my/24179/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
format Article
author Chiroma, H.
Abdullahi, U.A.
Hashem, I.A.T.
Saadi, Y.
Al-Dabbagh, R.D.
Ahmad, M.M.
Dada, G.E.
Danjuma, S.
Maitama, J.Z.
Abubakar, A.
Abdulhamid, S.�M.
spellingShingle Chiroma, H.
Abdullahi, U.A.
Hashem, I.A.T.
Saadi, Y.
Al-Dabbagh, R.D.
Ahmad, M.M.
Dada, G.E.
Danjuma, S.
Maitama, J.Z.
Abubakar, A.
Abdulhamid, S.�M.
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
author_facet Chiroma, H.
Abdullahi, U.A.
Hashem, I.A.T.
Saadi, Y.
Al-Dabbagh, R.D.
Ahmad, M.M.
Dada, G.E.
Danjuma, S.
Maitama, J.Z.
Abubakar, A.
Abdulhamid, S.�M.
author_sort Chiroma, H.
title A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
title_short A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
title_full A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
title_fullStr A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
title_full_unstemmed A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
title_sort theoretical framework for big data analytics based on computational intelligent algorithms with the potential to reduce energy consumption
publisher Springer Verlag
publishDate 2019
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37
http://eprints.utp.edu.my/24179/
_version_ 1738656576784302080
score 13.211869