A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Springer Verlag
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37 http://eprints.utp.edu.my/24179/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.24179 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.241792021-08-19T15:27:25Z A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption Chiroma, H. Abdullahi, U.A. Hashem, I.A.T. Saadi, Y. Al-Dabbagh, R.D. Ahmad, M.M. Dada, G.E. Danjuma, S. Maitama, J.Z. Abubakar, A. Abdulhamid, S.�M. Springer Verlag 2019 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37 Chiroma, H. and Abdullahi, U.A. and Hashem, I.A.T. and Saadi, Y. and Al-Dabbagh, R.D. and Ahmad, M.M. and Dada, G.E. and Danjuma, S. and Maitama, J.Z. and Abubakar, A. and Abdulhamid, S.�M. (2019) A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption. Green Energy and Technology . pp. 1-20. http://eprints.utp.edu.my/24179/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
format |
Article |
author |
Chiroma, H. Abdullahi, U.A. Hashem, I.A.T. Saadi, Y. Al-Dabbagh, R.D. Ahmad, M.M. Dada, G.E. Danjuma, S. Maitama, J.Z. Abubakar, A. Abdulhamid, S.�M. |
spellingShingle |
Chiroma, H. Abdullahi, U.A. Hashem, I.A.T. Saadi, Y. Al-Dabbagh, R.D. Ahmad, M.M. Dada, G.E. Danjuma, S. Maitama, J.Z. Abubakar, A. Abdulhamid, S.�M. A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
author_facet |
Chiroma, H. Abdullahi, U.A. Hashem, I.A.T. Saadi, Y. Al-Dabbagh, R.D. Ahmad, M.M. Dada, G.E. Danjuma, S. Maitama, J.Z. Abubakar, A. Abdulhamid, S.�M. |
author_sort |
Chiroma, H. |
title |
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
title_short |
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
title_full |
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
title_fullStr |
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
title_full_unstemmed |
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption |
title_sort |
theoretical framework for big data analytics based on computational intelligent algorithms with the potential to reduce energy consumption |
publisher |
Springer Verlag |
publishDate |
2019 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069435045&doi=10.1007%2f978-3-319-69889-2_1&partnerID=40&md5=e381282f0ac52300283784893075ad37 http://eprints.utp.edu.my/24179/ |
_version_ |
1738656576784302080 |
score |
13.211869 |