A theoretical framework for big data analytics based on computational intelligent algorithms with the potential to reduce energy consumption
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explor...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Book Chapter |
Language: | English English |
Published: |
Springer Verlag
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/74314/1/Advances%2Bon%2BComputational%2BIntelligence%2Bi.pdf http://irep.iium.edu.my/74314/7/73214_A%20Theoretical%20Framework%20for%20Big%20Data%20Analytics_Scopus.pdf http://irep.iium.edu.my/74314/ https://link.springer.com/chapter/10.1007/978-3-319-69889-2_1 https://doi.org/10.1007/978-3-319-69889-2_1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Internet
http://irep.iium.edu.my/74314/1/Advances%2Bon%2BComputational%2BIntelligence%2Bi.pdfhttp://irep.iium.edu.my/74314/7/73214_A%20Theoretical%20Framework%20for%20Big%20Data%20Analytics_Scopus.pdf
http://irep.iium.edu.my/74314/
https://link.springer.com/chapter/10.1007/978-3-319-69889-2_1
https://doi.org/10.1007/978-3-319-69889-2_1