Autonomous road roundabout detection and navigation system for smart vehicles and cities using laser simulator fuzzy logic algorithms and sensor fusion
A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator–fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/93231/1/MusaMailah2020_AutonomousRoadRoundaboutDetection.pdf http://eprints.utm.my/id/eprint/93231/ http://dx.doi.org/10.3390/s20133694 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator–fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a predefined goal while discovering and detecting the road roundabout. A complete modeling and path planning of the road’s roundabout intersection was derived to enable the WMR to navigate autonomously in indoor and outdoor terrains. A new algorithm, called Laser Simulator, has been introduced to detect various entities in a road roundabout setting, which is later integrated with fuzzy logic algorithm for making the right decision about the existence of the roundabout. The sensor fusion process involving the use of a Wi-Fi camera, laser range finder, and odometry was implemented to generate the robot’s path planning and localization within the road environment. The local maps were built using the extracted data from the camera and laser range finder to estimate the road parameters such as road width, side curbs, and roundabout center, all in two-dimensional space. The path generation algorithm was fully derived within the local maps and tested with a WMR platform in real-time. |
---|