High-dimensional QSAR modelling using penalized linear regression model with L1/2-norm
In high-dimensional quantitative structure–activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthe...
Saved in:
Main Authors: | , , , |
---|---|
格式: | Article |
出版: |
Taylor and Francis Ltd.
2016
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/72108/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987643691&doi=10.1080%2f1062936X.2016.1228696&partnerID=40&md5=4d4834740f41f51ed40fd692c7811449 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!