High-dimensional QSAR modelling using penalized linear regression model with L1/2-norm
In high-dimensional quantitative structure–activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthe...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Taylor and Francis Ltd.
2016
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/72108/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987643691&doi=10.1080%2f1062936X.2016.1228696&partnerID=40&md5=4d4834740f41f51ed40fd692c7811449 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|