Short-term load forecasting method based on fuzzy time series, seasonality and long memory process
Seasonal Auto Regressive Fractionally Integrated Moving Average (SARFIMA) is a well-known model for forecasting of seasonal time series that follow a long memory process. However, to better boost the accuracy of forecasts inside such data for nonlinear problem, in this study, a combination of Fuzzy...
محفوظ في:
المؤلفون الرئيسيون: | Sadaei, Hossein Javedani, Guimaraes, Frederico Gadelha, Cidiney Jose, Da Silva, Lee, Muhammad Hisyam @ Wee Yew, Tayyebe, Eslami |
---|---|
التنسيق: | مقال |
منشور في: |
Elsevier Science BV
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/66169/ http://dx.doi.org/10.1016/j.ijar.2017.01.006 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A refined multi-seasonality weighted fuzzy time series model for short term load forecasting
بواسطة: Sadaei, Hossein Javedani, وآخرون
منشور في: (2012) -
Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
بواسطة: Sadaei, Hossein Javedani, وآخرون
منشور في: (2019) -
Short-term load forecasting method based on fuzzy time series, seasonality and long memory process
بواسطة: Sadaei, H. J.
منشور في: (2017) -
Short term residential load forecasting using long short-term memory recurrent neural network
بواسطة: Muneer, A., وآخرون
منشور في: (2022) -
Improved models in fuzzy time series for forecasting
بواسطة: Sadaei, Hossein Javedani
منشور في: (2013)