Short-term load forecasting method based on fuzzy time series, seasonality and long memory process
Seasonal Auto Regressive Fractionally Integrated Moving Average (SARFIMA) is a well-known model for forecasting of seasonal time series that follow a long memory process. However, to better boost the accuracy of forecasts inside such data for nonlinear problem, in this study, a combination of Fuzzy...
保存先:
主要な著者: | Sadaei, Hossein Javedani, Guimaraes, Frederico Gadelha, Cidiney Jose, Da Silva, Lee, Muhammad Hisyam @ Wee Yew, Tayyebe, Eslami |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier Science BV
2017
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/66169/ http://dx.doi.org/10.1016/j.ijar.2017.01.006 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A refined multi-seasonality weighted fuzzy time series model for short term load forecasting
著者:: Sadaei, Hossein Javedani, 等
出版事項: (2012) -
Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
著者:: Sadaei, Hossein Javedani, 等
出版事項: (2019) -
Short-term load forecasting method based on fuzzy time series, seasonality and long memory process
著者:: Sadaei, H. J.
出版事項: (2017) -
Short term residential load forecasting using long short-term memory recurrent neural network
著者:: Muneer, A., 等
出版事項: (2022) -
Improved models in fuzzy time series for forecasting
著者:: Sadaei, Hossein Javedani
出版事項: (2013)