Short-term load forecasting method based on fuzzy time series, seasonality and long memory process

Seasonal Auto Regressive Fractionally Integrated Moving Average (SARFIMA) is a well-known model for forecasting of seasonal time series that follow a long memory process. However, to better boost the accuracy of forecasts inside such data for nonlinear problem, in this study, a combination of Fuzzy...

詳細記述

保存先:
書誌詳細
主要な著者: Sadaei, Hossein Javedani, Guimaraes, Frederico Gadelha, Cidiney Jose, Da Silva, Lee, Muhammad Hisyam @ Wee Yew, Tayyebe, Eslami
フォーマット: 論文
出版事項: Elsevier Science BV 2017
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/66169/
http://dx.doi.org/10.1016/j.ijar.2017.01.006
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料