Short-term load forecasting method based on fuzzy time series, seasonality and long memory process
Seasonal Auto Regressive Fractionally Integrated Moving Average (SARFIMA) is a well-known model for forecasting of seasonal time series that follow a long memory process. However, to better boost the accuracy of forecasts inside such data for nonlinear problem, in this study, a combination of Fuzzy...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier Science BV
2017
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/66169/ http://dx.doi.org/10.1016/j.ijar.2017.01.006 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|