Diversity enhancement in community recommendation using tensor decomposition and co-clustering
The major aim of Recommender System is to provide appropriate items for user, based on his preferences and intuitively be assessed with accuracy based metrics like precision and recall. Though, diversity of recommended lists is a new emerging debate in RS evaluation. This work tries to improve diver...
保存先:
主要な著者: | Mohamed Dahlan, Halina, Che Hussin, Ab. Razak, Koochi, Sareh Rashidi, Koochi, Morteza Rashidi |
---|---|
フォーマット: | 論文 |
出版事項: |
Asian Research Publishing Network
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/60202/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Using trust-based recommender systems for personalized health content
著者:: Koochi, Morteza Rashidi, 等
出版事項: (2013) -
Tensorized neural network for multi-aspect rating-based recommendation
著者:: Khairudin, Nurkhairizan, 等
出版事項: (2019) -
A review of potential applications of Tensor Decompositions to Electromagnetics and energy works
著者:: Mageed I.A., 等
出版事項: (2023) -
Workforce diversity enhancing employee performance in small and medium-sized enterprises in Pakistan
著者:: Malik, Nida, 等
出版事項: (2022) -
Improving b2c e-commerce trust through social presence factors
著者:: Che Lah, Nur Syadhila, 等
出版事項: (2013)