Radial basis function (RBF) for non-linear dynamic system identification
One of the key problem in system identification is finding a suitable model structure. In this paper, radial basis function (RBF) network using various basis functions are trained to represent discrete-time nonlinear dynamic systems and the results are compared. The orthogonal least squarealgorithm...
Saved in:
Main Authors: | Ahmad, Robiah, Jamaluddin, Hishamuddin |
---|---|
格式: | Article |
語言: | English |
出版: |
Penerbit UTM Press
2002
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/1301/1/JT36A4.pdf http://eprints.utm.my/id/eprint/1301/ http://www.penerbit.utm.my/onlinejournal/36/A/JT36A4.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Theory and applications of radial basis function neurofuzzy control systems
由: Teo, Lian Seng
出版: (1998) -
Identification of non-linear dynamic systems using fuzzy system with constrained membership functions
由: Yaakob, Mohd. Shafiek
出版: (2004) -
Optimum grouping in a modified genetic algorithm for discrete-time, non-linear system identification
由: Jamaluddin, Hishamuddin, et al.
出版: (2007) -
Optimization of tool life using in milling using radial basis function network
由: Mohd Faizal, Aziz
出版: (2010) -
Hybridization of metaheuristic algorithm in training radial basis function with dynamic decay adjustment for condition monitoring / Chong Hue Yee
由: Chong , Hue Yee
出版: (2023)