Trajectory tracking of a quadcopter UAV using PID controller
UAVs or Drones are aircraft with no onboard pilot to control the flight. They are introduced in a few categories such as single-rotor, multi-rotors, fixed-wing, and hybrid VTOL. As for multirotor drones, quadcopters are the most well-known either commercially or in the research field. Due to its adv...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/108629/1/MohdAriffanan2023_TrajectoryTrackingofaQuadcopterUAV.pdf http://eprints.utm.my/108629/ http://dx.doi.org/10.11113/elektrika.v22n2.440 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.108629 |
---|---|
record_format |
eprints |
spelling |
my.utm.1086292024-11-24T06:54:19Z http://eprints.utm.my/108629/ Trajectory tracking of a quadcopter UAV using PID controller Baharuddin, A'dilah Mohd. Basri, Mohd. Ariffanan TK Electrical engineering. Electronics Nuclear engineering UAVs or Drones are aircraft with no onboard pilot to control the flight. They are introduced in a few categories such as single-rotor, multi-rotors, fixed-wing, and hybrid VTOL. As for multirotor drones, quadcopters are the most well-known either commercially or in the research field. Due to its advantages, a quadcopter has been chosen to perform various tasks across various fields such as entertainment, military, meteorological reconnaissance, civil and emergency responses. As the demand for quadcopters has diverged, the required features of quadcopters have also diverged. One of the current features required by quadcopters is the ability to track trajectories. However, due to its nature of non-linearity, under-actuated and unstable, controlling quadcopter for an accurate and stable performance is quite a challenge. Despite the various proposed methods throughout the past decades, PID controller is still used as either the main controller or the base controller in most cases of industrial control, including quadcopter, mainly due to its simplicity and robustness. However, to design a proper PID controller for quadcopter system is a challenge as it defies the control inputs of four with its six degree-of-freedom form, in which six inputs are required to be controlled to ensure a stable and accurate flight. This paper derived a mathematically model of a quadcopter with Newton-Euler’s equation. Some assumptions on the body and structure of the quadcopter are taken into account to make the modelling possible. Then, a manually tuned PID controller is designed to achieve the objective of controlling the operation and stability of the quadcopter during its flight. The designed controller is tested with five different trajectories which are circular, square, lemniscate, zigzag, and spiral. The results show the proposed controller successfully tracks the desired trajectories, which prove PID controller can be used to control a quadcopter. Penerbit UTM Press 2023 Article PeerReviewed application/pdf en http://eprints.utm.my/108629/1/MohdAriffanan2023_TrajectoryTrackingofaQuadcopterUAV.pdf Baharuddin, A'dilah and Mohd. Basri, Mohd. Ariffanan (2023) Trajectory tracking of a quadcopter UAV using PID controller. ELEKTRIKA- Journal of Electrical Engineering, 22 (2). pp. 14-21. ISSN 0128-4428 http://dx.doi.org/10.11113/elektrika.v22n2.440 DOI : 10.11113/elektrika.v22n2.440 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Baharuddin, A'dilah Mohd. Basri, Mohd. Ariffanan Trajectory tracking of a quadcopter UAV using PID controller |
description |
UAVs or Drones are aircraft with no onboard pilot to control the flight. They are introduced in a few categories such as single-rotor, multi-rotors, fixed-wing, and hybrid VTOL. As for multirotor drones, quadcopters are the most well-known either commercially or in the research field. Due to its advantages, a quadcopter has been chosen to perform various tasks across various fields such as entertainment, military, meteorological reconnaissance, civil and emergency responses. As the demand for quadcopters has diverged, the required features of quadcopters have also diverged. One of the current features required by quadcopters is the ability to track trajectories. However, due to its nature of non-linearity, under-actuated and unstable, controlling quadcopter for an accurate and stable performance is quite a challenge. Despite the various proposed methods throughout the past decades, PID controller is still used as either the main controller or the base controller in most cases of industrial control, including quadcopter, mainly due to its simplicity and robustness. However, to design a proper PID controller for quadcopter system is a challenge as it defies the control inputs of four with its six degree-of-freedom form, in which six inputs are required to be controlled to ensure a stable and accurate flight. This paper derived a mathematically model of a quadcopter with Newton-Euler’s equation. Some assumptions on the body and structure of the quadcopter are taken into account to make the modelling possible. Then, a manually tuned PID controller is designed to achieve the objective of controlling the operation and stability of the quadcopter during its flight. The designed controller is tested with five different trajectories which are circular, square, lemniscate, zigzag, and spiral. The results show the proposed controller successfully tracks the desired trajectories, which prove PID controller can be used to control a quadcopter. |
format |
Article |
author |
Baharuddin, A'dilah Mohd. Basri, Mohd. Ariffanan |
author_facet |
Baharuddin, A'dilah Mohd. Basri, Mohd. Ariffanan |
author_sort |
Baharuddin, A'dilah |
title |
Trajectory tracking of a quadcopter UAV using PID controller |
title_short |
Trajectory tracking of a quadcopter UAV using PID controller |
title_full |
Trajectory tracking of a quadcopter UAV using PID controller |
title_fullStr |
Trajectory tracking of a quadcopter UAV using PID controller |
title_full_unstemmed |
Trajectory tracking of a quadcopter UAV using PID controller |
title_sort |
trajectory tracking of a quadcopter uav using pid controller |
publisher |
Penerbit UTM Press |
publishDate |
2023 |
url |
http://eprints.utm.my/108629/1/MohdAriffanan2023_TrajectoryTrackingofaQuadcopterUAV.pdf http://eprints.utm.my/108629/ http://dx.doi.org/10.11113/elektrika.v22n2.440 |
_version_ |
1817841622649405440 |
score |
13.223943 |