An attention-based deep learning model for multi-horizon time series forecasting by considering periodic characteristic

Recently, transformer-based models have exhibited great performance in multi-horizon time series forecasting tasks. However, the core module of these models, the self-attention mechanism, is insensitive to the temporal order and suffers from attention dispersion over long time sequences. These limit...

詳細記述

保存先:
書誌詳細
主要な著者: Fang, Jin, Guo, Xin, Liu, Yujia, Chang, Xiaokun, Fujita, Hamido, Wu, Jian
フォーマット: 論文
出版事項: Elsevier Ltd 2023
主題:
オンライン・アクセス:http://eprints.utm.my/106425/
http://dx.doi.org/10.1016/j.cie.2023.109667
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料