An attention-based deep learning model for multi-horizon time series forecasting by considering periodic characteristic
Recently, transformer-based models have exhibited great performance in multi-horizon time series forecasting tasks. However, the core module of these models, the self-attention mechanism, is insensitive to the temporal order and suffers from attention dispersion over long time sequences. These limit...
保存先:
主要な著者: | , , , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier Ltd
2023
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/106425/ http://dx.doi.org/10.1016/j.cie.2023.109667 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|