Electrokinetic extraction of doxorubicin from biological fluids by polymer inclusion membrane sampling probe
A polymer inclusion membrane (PIM) based sampling probe was developed for electrokinetic extraction of drugs from biological fluids. The probe was fabricated by dip-coating a nonconductive glass capillary tube in a homogeneous PIM solution for three cycles. The PIM solution comprised cellulose triac...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
American Chemical Society
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/105011/ http://dx.doi.org/10.1021/acs.analchem.2c02937 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polymer inclusion membrane (PIM) based sampling probe was developed for electrokinetic extraction of drugs from biological fluids. The probe was fabricated by dip-coating a nonconductive glass capillary tube in a homogeneous PIM solution for three cycles. The PIM solution comprised cellulose triacetate (CTA), 2-nitrophenyl octyl ether (NPOE), and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [EMIM][NTf2] in a ratio of 5:4:2. The developed probe electrokinetically extracted doxorubicin from human plasma, human serum, and dried blood spot (DBS). The practicability and reliability of the electrokinetic extraction were evaluated by LC-MS/MS to quantify the desorption of extracted doxorubicin. Under the optimized conditions, a quantification limit of 0.2-2 ng/mL was achieved for the three biological samples. The probe was further integrated into a portable battery-powered device for safe low-voltage (36 V) electrokinetic extraction. The developed technique is envisioned to provide a more efficient analytical workflow in the laboratory. |
---|