Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology
Sebuah model pengesanan objek yang terdiri daripada septrum ketonjolan, peruasan anjakan purata, dan anggaran bentuk morfologi telah dicadangkan dalam kajian ini. Kaedah pengiraan ketonjolan yang lebih baik berdasarkan perhatian penglihatan manusia telah diperkenalkan. Septrum ketonjolan adalah b...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.usm.my/41574/1/Traffic_Sign_And_License_Plate_Detection_Based_On_Saliency%2C_Meanshift%2C_And_Mathematical_Morphology.pdf http://eprints.usm.my/41574/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.usm.eprints.41574 |
---|---|
record_format |
eprints |
institution |
Universiti Sains Malaysia |
building |
Hamzah Sendut Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Sains Malaysia |
content_source |
USM Institutional Repository |
url_provider |
http://eprints.usm.my/ |
language |
English |
topic |
T Technology TK7800-8360 Electronics |
spellingShingle |
T Technology TK7800-8360 Electronics Cheong , Wei Sheik Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
description |
Sebuah model pengesanan objek yang terdiri daripada septrum ketonjolan, peruasan
anjakan purata, dan anggaran bentuk morfologi telah dicadangkan dalam kajian ini. Kaedah
pengiraan ketonjolan yang lebih baik berdasarkan perhatian penglihatan manusia telah
diperkenalkan. Septrum ketonjolan adalah berdasarkan prinsip operasi de-konvolusi dalam
domain log-spektrum, dan pengiraannya cepat dengan hanya parameter tunggal untuk ditala.
Selain itu, septrum ketonjolan mempamerkan ciri keteguhan warna di bawah pelbagai
pencahayaan, dengan skim warna biasa RGB boleh digunakan untuk imej warna. Bagi
meningkatkan lagi prestasi model yang dicadangkan, anjakan purata tanpa parametrik dan
kaedah Otsu telah digunakan untuk meruaskan objek daripada sekitarnya. Selain itu, kaedah
faktor bentuk yang mudah berdasarkan morfologi matematik diperkenalkan untuk mengenal
pasti objek yang diruas dengan mengukur bentuknya. Untuk menilai keberkesanan dan
kesesuaian kaedah yang dicadangkan, dua masalah di sektor pengangkutan, iaitu,
pengesanan tanda isyarat lalu-lintas dan plat lesen kenderaan dikaji secara terperinci.
Berdasarkan dua set data daripada umum dan dikumpul secara tempatan, kaedah yang
dicadangkan menunjukkan keseimbangan yang baik antara ketepatan dan kelajuan.
Keputusan simulasi menunjukkan bahawa ia adalah tujuh kali lebih cepat daripada teknik
perihalan bentuk dalam pengesanan tanda isyarat lalu-lintas, dan mengambil masa kurang
daripada 0.6 saat dalam pengesanan plat lesen kenderaan berbanding degan kaedah
pemadanan pencontoh dan pembelajaran mesin. Kajian ini menunjukkan kegunaan kaedah
pengesanan objek dalam satu kerangka kerja bersepadu untuk kedua-dua masalah pegesanan
tanda isyarat lalu-lintas dan plat lesen kenderaan, oleh itu, menyumbang ke arah kemajuan
dalam sistem pengangkutan pintar.
________________________________________________________________________________________________________________________
An object detection model that consists of cepstrum saliency, mean-shift segmentation,
and morphological shape estimation is proposed in this research. An improved
computational saliency method based on human visual attention is introduced. Cepstrum
saliency is based on the principles of de-convolution in the log-spectrum domain, and is
computationally fast with only single parameter to tune. Moreover, cepstrum saliency
exhibits color consistency under various illuminations, where the normalized RGB color
scheme can be used for color images. To further enhance the proposed object detection
model, non-parametric mean-shift and Otsu’s method are utilized for figure-ground
segmentation. Besides that, simple shape factors based on mathematical morphology are
introduced to identify the segmented objects by measuring shapes. To evaluate the
effectiveness and applicability of the proposed method, two problems in the transportation
section, i.e., traffic sign and license plate detection, were studied in detail. Based on two
publicly available and locally collected data sets, the proposed detection method
demonstrates a good equipoise between accuracy and speed. The simulation results indicate
that it is seven times faster than shape descriptors in traffic sign detection, and has an
average of less than 0.6 s in license plate detection as compared with template matching and
machine learning methods. The findings indicate the usefulness of the proposed object
detection method in providing a unified framework for both traffic sign and license plate
detection problems; therefore contributing towards advancement in intelligent transportation
systems.
|
format |
Thesis |
author |
Cheong , Wei Sheik |
author_facet |
Cheong , Wei Sheik |
author_sort |
Cheong , Wei Sheik |
title |
Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
title_short |
Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
title_full |
Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
title_fullStr |
Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
title_full_unstemmed |
Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology |
title_sort |
traffic sign and license plate detection based on saliency, meanshift, and mathematical morphology |
publishDate |
2015 |
url |
http://eprints.usm.my/41574/1/Traffic_Sign_And_License_Plate_Detection_Based_On_Saliency%2C_Meanshift%2C_And_Mathematical_Morphology.pdf http://eprints.usm.my/41574/ |
_version_ |
1643710258016681984 |
spelling |
my.usm.eprints.41574 http://eprints.usm.my/41574/ Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology Cheong , Wei Sheik T Technology TK7800-8360 Electronics Sebuah model pengesanan objek yang terdiri daripada septrum ketonjolan, peruasan anjakan purata, dan anggaran bentuk morfologi telah dicadangkan dalam kajian ini. Kaedah pengiraan ketonjolan yang lebih baik berdasarkan perhatian penglihatan manusia telah diperkenalkan. Septrum ketonjolan adalah berdasarkan prinsip operasi de-konvolusi dalam domain log-spektrum, dan pengiraannya cepat dengan hanya parameter tunggal untuk ditala. Selain itu, septrum ketonjolan mempamerkan ciri keteguhan warna di bawah pelbagai pencahayaan, dengan skim warna biasa RGB boleh digunakan untuk imej warna. Bagi meningkatkan lagi prestasi model yang dicadangkan, anjakan purata tanpa parametrik dan kaedah Otsu telah digunakan untuk meruaskan objek daripada sekitarnya. Selain itu, kaedah faktor bentuk yang mudah berdasarkan morfologi matematik diperkenalkan untuk mengenal pasti objek yang diruas dengan mengukur bentuknya. Untuk menilai keberkesanan dan kesesuaian kaedah yang dicadangkan, dua masalah di sektor pengangkutan, iaitu, pengesanan tanda isyarat lalu-lintas dan plat lesen kenderaan dikaji secara terperinci. Berdasarkan dua set data daripada umum dan dikumpul secara tempatan, kaedah yang dicadangkan menunjukkan keseimbangan yang baik antara ketepatan dan kelajuan. Keputusan simulasi menunjukkan bahawa ia adalah tujuh kali lebih cepat daripada teknik perihalan bentuk dalam pengesanan tanda isyarat lalu-lintas, dan mengambil masa kurang daripada 0.6 saat dalam pengesanan plat lesen kenderaan berbanding degan kaedah pemadanan pencontoh dan pembelajaran mesin. Kajian ini menunjukkan kegunaan kaedah pengesanan objek dalam satu kerangka kerja bersepadu untuk kedua-dua masalah pegesanan tanda isyarat lalu-lintas dan plat lesen kenderaan, oleh itu, menyumbang ke arah kemajuan dalam sistem pengangkutan pintar. ________________________________________________________________________________________________________________________ An object detection model that consists of cepstrum saliency, mean-shift segmentation, and morphological shape estimation is proposed in this research. An improved computational saliency method based on human visual attention is introduced. Cepstrum saliency is based on the principles of de-convolution in the log-spectrum domain, and is computationally fast with only single parameter to tune. Moreover, cepstrum saliency exhibits color consistency under various illuminations, where the normalized RGB color scheme can be used for color images. To further enhance the proposed object detection model, non-parametric mean-shift and Otsu’s method are utilized for figure-ground segmentation. Besides that, simple shape factors based on mathematical morphology are introduced to identify the segmented objects by measuring shapes. To evaluate the effectiveness and applicability of the proposed method, two problems in the transportation section, i.e., traffic sign and license plate detection, were studied in detail. Based on two publicly available and locally collected data sets, the proposed detection method demonstrates a good equipoise between accuracy and speed. The simulation results indicate that it is seven times faster than shape descriptors in traffic sign detection, and has an average of less than 0.6 s in license plate detection as compared with template matching and machine learning methods. The findings indicate the usefulness of the proposed object detection method in providing a unified framework for both traffic sign and license plate detection problems; therefore contributing towards advancement in intelligent transportation systems. 2015-09 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/41574/1/Traffic_Sign_And_License_Plate_Detection_Based_On_Saliency%2C_Meanshift%2C_And_Mathematical_Morphology.pdf Cheong , Wei Sheik (2015) Traffic Sign And License Plate Detection Based On Saliency, Meanshift, And Mathematical Morphology. Masters thesis, Universiti Sains Malaysia. |
score |
13.211869 |