Use of selected spectral ratios to assess the response of pineapple to potassium nutrition

Potassium (K) nutrition in pineapple grown on tropical peat can be problematic due to high precipitation which encourages leaching losses. Non-destructive tools that can assess K deficiency and the accompanying changes in biophysical and biochemical properties within pineapple is a good strategy to...

Full description

Saved in:
Bibliographic Details
Main Authors: Balasundram, Siva K., Chong, Yen Mee
Format: Article
Published: UiTM Press 2021
Online Access:http://psasir.upm.edu.my/id/eprint/93502/
https://jsst.uitm.edu.my/index.php/jsst/article/view/11
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Potassium (K) nutrition in pineapple grown on tropical peat can be problematic due to high precipitation which encourages leaching losses. Non-destructive tools that can assess K deficiency and the accompanying changes in biophysical and biochemical properties within pineapple is a good strategy to employ. In this study, we assessed the biophysical changes in pineapple (var. MD2) in response to different K rates by using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430-680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.e. Normalized Pigment Chlorophyll Index (NPCI), Plant Senescence Index (PSRI) and Red-edge Vegetation Index (RVSI) were found to best describe K treatment effects on pineapple canopy reflectance. This study could be extended further to include pineapple varieties other than MD2, and also key nutrients, such as N and P, for better fertilizer management in peat-grown pineapple.