Rockfall source identification using a hybrid Gaussian mixture-ensemble machine learning model and LiDAR data
The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this...
محفوظ في:
المؤلفون الرئيسيون: | Fanos, Ali Mutar, Pradhan, Biswajeet, Mansor, Shattri, Md Yusoff, Zainuddin, Abdullah, Ahmad Fikri, Jung, Hyung Sup |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
The Korean Society of Remote Sensing
2019
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/82041/1/Rockfall%20source%20identification%20using%20a%20hybrid%20Gaussian%20mixture-ensemble%20machine%20learning%20model%20and%20LiDAR%20data.pdf http://psasir.upm.edu.my/id/eprint/82041/ https://www.koreascience.or.kr/article/JAKO201909242559364.page |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multi-scenario rockfall hazard assessment using LiDAR data and GIS
بواسطة: Fanos, Ali Mutar, وآخرون
منشور في: (2016) -
Hybrid of gaussian and wallis filter for urban area characterization of LiDAR images
بواسطة: Alias, Mardhiah
منشور في: (2013) -
Deep learning approach for building detection using LiDAR–orthophoto fusion
بواسطة: Nahhas, Faten Hamed, وآخرون
منشور في: (2018) -
Rockfall hazard assessment based on airborne laser scanning data and GIS in tropical region
بواسطة: Fanos, Ali Mutar
منشور في: (2016) -
Development of a hybrid machine learning model for rockfall source and hazard assessment using laser scanning data and GIS
بواسطة: Fanos, Ali Mutar
منشور في: (2019)