Rockfall source identification using a hybrid Gaussian mixture-ensemble machine learning model and LiDAR data

The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this...

詳細記述

保存先:
書誌詳細
主要な著者: Fanos, Ali Mutar, Pradhan, Biswajeet, Mansor, Shattri, Md Yusoff, Zainuddin, Abdullah, Ahmad Fikri, Jung, Hyung Sup
フォーマット: 論文
言語:English
出版事項: The Korean Society of Remote Sensing 2019
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/82041/1/Rockfall%20source%20identification%20using%20a%20hybrid%20Gaussian%20mixture-ensemble%20machine%20learning%20model%20and%20LiDAR%20data.pdf
http://psasir.upm.edu.my/id/eprint/82041/
https://www.koreascience.or.kr/article/JAKO201909242559364.page
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!