Formation and characterization of thiol-modified fibrillated whey protein isolate solution with enhanced functionalities

The effect of thiolation using propanethiol on the functionalities of fibrillated whey protein isolate (WPI) solution at different pH values was studied. Fibrillated WPI solutions were thiolated at different molar ratios of propanethiol:carboxyl group (0.5:1, 1:1, 2:1, 3:1, 4:1) and the highest este...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chang, Hon Weng, Tan, Tai Boon, Tan, Phui Yee, Abas, Faridah, Lai, Oi Ming, Nehdi, Imededdine Arbi, Tan, Chin Ping
格式: Article
語言:English
出版: Elsevier 2017
在線閱讀:http://psasir.upm.edu.my/id/eprint/61910/1/Formation%20and%20characterization%20of%20thiol-modified%20fibrillated%20whey%20protein%20isolate%20solution%20with%20enhanced%20functionalities.pdf
http://psasir.upm.edu.my/id/eprint/61910/
https://www.sciencedirect.com/science/article/pii/S0260877417303072
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The effect of thiolation using propanethiol on the functionalities of fibrillated whey protein isolate (WPI) solution at different pH values was studied. Fibrillated WPI solutions were thiolated at different molar ratios of propanethiol:carboxyl group (0.5:1, 1:1, 2:1, 3:1, 4:1) and the highest esterification extent ratio was obtained at 4:1 (pH 9). We also found that the thiolation process improved the foaming capacity and foam stability. TEM micrographs evidenced aggregation of thiol-modified fibrillated WPI. A network of shortened fibrils attached to each other was formed upon thiolation, suggesting good physical interaction. This was coherent with the increment of zeta potential values, indicating a greater repulsion force to retard fibrils aggregation. Thiolation enhanced emulsifying stability index of thiol-modified fibrillated WPI solution (pH 8) and diminished its susceptibility to pH changes. This has broadened the potential application of fibrils as food ingredients.