Surface EMG classification for prosthesis control: fuzzy logic vs. artificial neural network
Electromyography control system (ECS) is a well-known technique for prosthesis control application. It consists of two main modules namely feature extraction and classification. This paper presents the investigation of the classification module in the ECS. The surface electromyographic (EMG) signal...
محفوظ في:
المؤلفون الرئيسيون: | Ahmad, Siti Anom, Khalid, Mohd Asyraf, Ishak, Asnor Juraiza, Md. Ali, Sawal Hamid |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
SciTePress
2012
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/31662/1/31662.pdf http://psasir.upm.edu.my/id/eprint/31662/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Investigate the transcendent adapted of wavelet threshold algorithms for elbow movement by surface EMG signal
بواسطة: Ghapanchizadeh, Hossein, وآخرون
منشور في: (2014) -
Developing multichannel surface EMG acquisition system by using instrument opamp INA2141
بواسطة: Ghapanchizadeh, Hossein, وآخرون
منشور في: (2014) -
Simple and computationally efficient movement classification approach for EMG-controlled prosthetic hand: ANFIS vs. artificial neural network
بواسطة: Fariman, Hessam Jahani, وآخرون
منشور في: (2015) -
Review of electromyography control systems based on pattern recognition for prosthesis control application
بواسطة: Ahmad, Siti Anom, وآخرون
منشور في: (2011) -
The use of artificial neural network in the classification of EMG signals
بواسطة: Ahsan, Md. Rezwanul, وآخرون
منشور في: (2012)