K-means clustering to improve the accuracy of decision tree response classification.
The use of deep generation with statistical-based surface generation merits from response utterances readily available from corpus. Representation and quality of the instance data are the foremost factors that affect classification accuracy of the statistical-based method. Thus, in classification ta...
保存先:
主要な著者: | Ali, S. A., Sulaiman , N., Mustapha, Aida, Mustapha, Norwati |
---|---|
フォーマット: | 論文 |
言語: | English English |
出版事項: |
Asian Network for Scientific Information (ANSINET)
2009
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/15392/1/K.pdf http://psasir.upm.edu.my/id/eprint/15392/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Improving accuracy of intention-based response classification using decision tree.
著者:: Ali, S. A., 等
出版事項: (2009) -
Improved normalization and standardization techniques for higher purity in K-means clustering
著者:: Dalatu, Paul Inuwa, 等
出版事項: (2016) -
Effective k-Means Clustering in Greedy Prepruned Tree-based Classification for Obstructive Sleep Apnea
著者:: Sim, Doreen Ying Ying, 等
出版事項: (2022) -
Comparison of expectation maximization and K-means clustering algorithms with ensemble classifier model
著者:: Sulaiman, Md. Nasir, 等
出版事項: (2018) -
A hybrid model of hierarchical clustering and decision tree for rule-based classification of diabetic patients.
著者:: Ibrahim, Norul Hidayah, 等
出版事項: (2013)