Performance analysis of support vector machine, Gaussian Process Regression, sequential quadratic programming algorithms in modeling hydrogen-rich syngas production from catalyzed co-gasification of biomass wastes from oil palm

Biomass; Catalysis; Digital storage; Gasification; Gaussian distribution; Hydrogen production; Learning algorithms; Lime; Palm oil; Quadratic programming; Regression analysis; Sensitivity analysis; Synthesis gas; Co-gasification; Gaussian process regression; Hydrogen-rich syngas; Machine learning al...

詳細記述

保存先:
書誌詳細
主要な著者: Ayodele B.V., Mustapa S.I., Kanthasamy R., Mohammad N., AlTurki A., Babu T.S.
その他の著者: 56862160400
フォーマット: 論文
出版事項: Elsevier Ltd 2023
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!