Performance analysis of support vector machine, Gaussian Process Regression, sequential quadratic programming algorithms in modeling hydrogen-rich syngas production from catalyzed co-gasification of biomass wastes from oil palm

Biomass; Catalysis; Digital storage; Gasification; Gaussian distribution; Hydrogen production; Learning algorithms; Lime; Palm oil; Quadratic programming; Regression analysis; Sensitivity analysis; Synthesis gas; Co-gasification; Gaussian process regression; Hydrogen-rich syngas; Machine learning al...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ayodele B.V., Mustapa S.I., Kanthasamy R., Mohammad N., AlTurki A., Babu T.S.
其他作者: 56862160400
格式: Article
出版: Elsevier Ltd 2023
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Biomass; Catalysis; Digital storage; Gasification; Gaussian distribution; Hydrogen production; Learning algorithms; Lime; Palm oil; Quadratic programming; Regression analysis; Sensitivity analysis; Synthesis gas; Co-gasification; Gaussian process regression; Hydrogen-rich syngas; Machine learning algorithms; Non-linear response; Performance; Quadratic modeling; Renewable energies; Support vectors machine; Syn gas; Support vector machines