Enhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake Basin based upon the autoregressive conditionally heteroskedastic time-series model
Hydrological modeling is one of the important subjects in managing water resources and the processes of predicting stochastic behavior. Developing Data-Driven Models (DDMs) to apply to hydrological modeling is a very complex issue because of the stochastic nature of the observed data, like seasonali...
محفوظ في:
المؤلفون الرئيسيون: | Attar N.F., Pham Q.B., Nowbandegani S.F., Rezaie-Balf M., Fai C.M., Ahmed A.N., Pipelzadeh S., Dung T.D., Nhi P.T.T., Khoi D.N., El-Shafie A. |
---|---|
مؤلفون آخرون: | 57203768412 |
التنسيق: | مقال |
منشور في: |
MDPI AG
2023
|
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Enhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake basin based upon the autoregressive conditionally heteroskedastic time-series model
بواسطة: Attar, Nasrin Fathollahzadeh, وآخرون
منشور في: (2020) -
Pemodelan generalized autoregressive conditional heteroskedasticity (Garch) dengan pendekatan kaedah bootstrap
بواسطة: Nur Amanina Zawali
منشور في: (2014) -
Estimating value at risk for sukuk market using generalized autoregressive conditional heteroskedasticity models
بواسطة: Hafezian, Pantea
منشور في: (2017) -
Comparing model of Air Pollution Index using Generalized Autoregressive Conditional Heteroskedasticity Family (GARCH)
بواسطة: Mohd Hirzie, Mohd Rodzhan, وآخرون
منشور في: (2023) -
Comparing model of air pollution index using generalized autoregressive conditional heteroskedasticity family (GARCH)
بواسطة: Zamrus, Nurul Asyikin, وآخرون
منشور في: (2024)