Enhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake Basin based upon the autoregressive conditionally heteroskedastic time-series model
Hydrological modeling is one of the important subjects in managing water resources and the processes of predicting stochastic behavior. Developing Data-Driven Models (DDMs) to apply to hydrological modeling is a very complex issue because of the stochastic nature of the observed data, like seasonali...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
منشور في: |
MDPI AG
2023
|
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|