Enhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake Basin based upon the autoregressive conditionally heteroskedastic time-series model
Hydrological modeling is one of the important subjects in managing water resources and the processes of predicting stochastic behavior. Developing Data-Driven Models (DDMs) to apply to hydrological modeling is a very complex issue because of the stochastic nature of the observed data, like seasonali...
保存先:
主要な著者: | , , , , , , , , , , |
---|---|
その他の著者: | |
フォーマット: | 論文 |
出版事項: |
MDPI AG
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|