The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin

Breakfast, which is typically consumed within 2-3 hours after waking up, is considered by many to be the most important meal of the day. Its carbohydrate (CHO) content ranges between 50-60% of its energy, meaning breakfast could replenish carbohydrate (glycogen) stores after a long overnight fast. A...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamed Nashrudin, Naharudin
Format: Thesis
Published: 2019
Subjects:
Online Access:http://studentsrepo.um.edu.my/11685/1/Mohamed_Nashrudin.pdf
http://studentsrepo.um.edu.my/11685/2/Mohamed_Nashrudin.pdf
http://studentsrepo.um.edu.my/11685/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.stud.11685
record_format eprints
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Student Repository
url_provider http://studentsrepo.um.edu.my/
topic Q Science (General)
RC1200 Sports Medicine
spellingShingle Q Science (General)
RC1200 Sports Medicine
Mohamed Nashrudin, Naharudin
The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
description Breakfast, which is typically consumed within 2-3 hours after waking up, is considered by many to be the most important meal of the day. Its carbohydrate (CHO) content ranges between 50-60% of its energy, meaning breakfast could replenish carbohydrate (glycogen) stores after a long overnight fast. A number of studies have shown the detrimental effect of omitting breakfast on endurance exercise, however, little is known about the effects on resistance exercise. Considering the prevalence of omitting breakfast among exercisers, commonly due to logistical/practical reasons, examining breakfast consumption versus omission on resistance exercise performance is of particular interest. To initially investigate this, the study reported in Chapter 3 compared performance in 4 sets to failure of back-squat and bench press at 90% of 10 repetition maximum (10-RM), between an ecologically valid breakfast (BC), containing 1.5 g carbohydrate/kg body mass, and a water only breakfast (BO). As hypothesised, total repetitions of back squat and bench press were less during BO compared to BC. Correspondingly, hunger was elevated, whilst fullness was decreased in the BC condition. These results demonstrate that omission of a pre-exercise breakfast might impair resistance exercise performance. However, it cannot be discounted that, as subjects were aware of when they were consuming breakfast or not, that the exercise performance responses were confounded by psychological factors (i.e. placebo/nocebo effects). Therefore, a double-blind study was conducted (Chapter 4), with the aim to compare resistance exercise performance after consuming a water only control breakfast (WAT) or two identical semi-solid breakfasts, one a virtually energy-free placebo (PLA), the other containing 1.5 g carbohydrate/kg body mass (CHO). CHO and PLA breakfasts were eaten with a spoon from a bowl and contained 4.25 mL/kg body mass water, 0.75 mL/kg body mass sugar-free orange squash and 0.1 g/kg body mass xanthan gum as a thickener, with addition of 1.5 g/kg body mass of maltodextrin in the CHO breakfast. Back-squat total repetitions were greater in both CHO and PLA compared to WAT. Correspondingly, CHO and PLA similarly suppressed hunger and increased fullness relative to WAT. This study indicated that breakfast likely exerted its effect on resistance exercise performance via a psychological effect. However, when higher volume resistance exercise was applied (Chapter 5), consisting of sets of 10 repetitions of leg extension to exhaustion at 80% 10-RM, an ergogenic role of carbohydrate was evident, as CHO produced greater total repetitions compared to PLA. Whilst the studies in Chapter 3 and 4 suggested that breakfast influenced performance via a psychological effect, appetite also responded correspondingly, raising the question as to whether appetite might influence resistance exercise performance. In a follow-up study (Chapter 6) two breakfasts containing 1.5 g carbohydrate/kg body mass were provided, but one included 0.1 g/kg body mass of xanthan gum (SEM), whilst the other did not (LIQ), with the aim of manipulating appetite without affecting carbohydrate intake. Interestingly, back squat total repetitions were greater following the SEM compared to LIQ and this correspond with decreased hunger and increased fullness in SEM compared to LIQ. In conclusion, the results from these experiments demonstrate that the perception of breakfast consumption, rather than carbohydrate/energy per se, improves resistance exercise performance. The ergogenic role of pre-exercise carbohydrate only seems to benefit extremely high-volume resistance exercise performance. Whether these effects are still apparent when pre-breakfast/meal glycogen stores are not optimal is unknown (i.e. if a not fully replaced from a previous training session). However, when subjects are well-fed, high-intensity intermittent exercise like resistance exercise might be influenced by sensation of fullness and a pre-exercise meal might exert its effects through this novel mechanism. In situations where the amount carbohydrate or the metabolic effects of the carbohydrate consumed before exercise are unlikely to influence performance (such as resistance exercise), consumption of meals that decrease sensations of hunger might be a simple strategy to enhance performance.
format Thesis
author Mohamed Nashrudin, Naharudin
author_facet Mohamed Nashrudin, Naharudin
author_sort Mohamed Nashrudin, Naharudin
title The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
title_short The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
title_full The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
title_fullStr The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
title_full_unstemmed The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin
title_sort effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / mohamed nashrudin naharudin
publishDate 2019
url http://studentsrepo.um.edu.my/11685/1/Mohamed_Nashrudin.pdf
http://studentsrepo.um.edu.my/11685/2/Mohamed_Nashrudin.pdf
http://studentsrepo.um.edu.my/11685/
_version_ 1738506515154731008
spelling my.um.stud.116852022-01-05T23:58:17Z The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin Mohamed Nashrudin, Naharudin Q Science (General) RC1200 Sports Medicine Breakfast, which is typically consumed within 2-3 hours after waking up, is considered by many to be the most important meal of the day. Its carbohydrate (CHO) content ranges between 50-60% of its energy, meaning breakfast could replenish carbohydrate (glycogen) stores after a long overnight fast. A number of studies have shown the detrimental effect of omitting breakfast on endurance exercise, however, little is known about the effects on resistance exercise. Considering the prevalence of omitting breakfast among exercisers, commonly due to logistical/practical reasons, examining breakfast consumption versus omission on resistance exercise performance is of particular interest. To initially investigate this, the study reported in Chapter 3 compared performance in 4 sets to failure of back-squat and bench press at 90% of 10 repetition maximum (10-RM), between an ecologically valid breakfast (BC), containing 1.5 g carbohydrate/kg body mass, and a water only breakfast (BO). As hypothesised, total repetitions of back squat and bench press were less during BO compared to BC. Correspondingly, hunger was elevated, whilst fullness was decreased in the BC condition. These results demonstrate that omission of a pre-exercise breakfast might impair resistance exercise performance. However, it cannot be discounted that, as subjects were aware of when they were consuming breakfast or not, that the exercise performance responses were confounded by psychological factors (i.e. placebo/nocebo effects). Therefore, a double-blind study was conducted (Chapter 4), with the aim to compare resistance exercise performance after consuming a water only control breakfast (WAT) or two identical semi-solid breakfasts, one a virtually energy-free placebo (PLA), the other containing 1.5 g carbohydrate/kg body mass (CHO). CHO and PLA breakfasts were eaten with a spoon from a bowl and contained 4.25 mL/kg body mass water, 0.75 mL/kg body mass sugar-free orange squash and 0.1 g/kg body mass xanthan gum as a thickener, with addition of 1.5 g/kg body mass of maltodextrin in the CHO breakfast. Back-squat total repetitions were greater in both CHO and PLA compared to WAT. Correspondingly, CHO and PLA similarly suppressed hunger and increased fullness relative to WAT. This study indicated that breakfast likely exerted its effect on resistance exercise performance via a psychological effect. However, when higher volume resistance exercise was applied (Chapter 5), consisting of sets of 10 repetitions of leg extension to exhaustion at 80% 10-RM, an ergogenic role of carbohydrate was evident, as CHO produced greater total repetitions compared to PLA. Whilst the studies in Chapter 3 and 4 suggested that breakfast influenced performance via a psychological effect, appetite also responded correspondingly, raising the question as to whether appetite might influence resistance exercise performance. In a follow-up study (Chapter 6) two breakfasts containing 1.5 g carbohydrate/kg body mass were provided, but one included 0.1 g/kg body mass of xanthan gum (SEM), whilst the other did not (LIQ), with the aim of manipulating appetite without affecting carbohydrate intake. Interestingly, back squat total repetitions were greater following the SEM compared to LIQ and this correspond with decreased hunger and increased fullness in SEM compared to LIQ. In conclusion, the results from these experiments demonstrate that the perception of breakfast consumption, rather than carbohydrate/energy per se, improves resistance exercise performance. The ergogenic role of pre-exercise carbohydrate only seems to benefit extremely high-volume resistance exercise performance. Whether these effects are still apparent when pre-breakfast/meal glycogen stores are not optimal is unknown (i.e. if a not fully replaced from a previous training session). However, when subjects are well-fed, high-intensity intermittent exercise like resistance exercise might be influenced by sensation of fullness and a pre-exercise meal might exert its effects through this novel mechanism. In situations where the amount carbohydrate or the metabolic effects of the carbohydrate consumed before exercise are unlikely to influence performance (such as resistance exercise), consumption of meals that decrease sensations of hunger might be a simple strategy to enhance performance. 2019-10 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/11685/1/Mohamed_Nashrudin.pdf application/pdf http://studentsrepo.um.edu.my/11685/2/Mohamed_Nashrudin.pdf Mohamed Nashrudin, Naharudin (2019) The effect of pre-exercise carbohydrate intake in the morning on appetite regulation and subsequent resistance exercise performance / Mohamed Nashrudin Naharudin. PhD thesis, Universiti Malaya. http://studentsrepo.um.edu.my/11685/
score 13.211869