System identification of nonlinear autoregressive models in monitoring dengue infection
This paper proposes system identification on application of nonlinear AR (NAR) based on Artificial Neural Network (ANN) for monitor of dengue infections. In building the model, three selection criteria, i.e. the final prediction error (FPE), Akaike's Information Criteria (AIC), and Lipschitz nu...
Saved in:
Main Authors: | Abdul Rahim, H., Ibrahim, F., Taib, M.N. |
---|---|
Format: | Article |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/9348/1/System_identification_of_nonlinear_autoregressive_models_in_monitoring_dengue_infection.pdf http://eprints.um.edu.my/9348/ http://www.scopus.com/inward/record.url?eid=2-s2.0-79551508977&partnerID=40&md5=0491420521e068f90b645b6f6da2cc77 www-ist.massey.ac.nz/s2is/Issues/v3/n4/papers/paper13.pdf www.s2is.org/Issues/v3/n4/papers/paper13.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
System identification of nonlinear autoregressive models in monitoring dengue infection
by: Abdul Rahim, Herlina, et al.
Published: (2010) -
Model order selection criterion for monitoring haemoglobin status in dengue patients using ARX model
by: Rahim, H.A., et al.
Published: (2008) -
Analysis of significant factors for dengue infection prognosis using the self organizing map
by: Faisal, T., et al.
Published: (2008) -
Monitoring haemoglobin status in dengue patients using ARMAX model
by: Abdul Rahim, H., et al.
Published: (2008) -
Application of bioelectrical impedance sensing techniques for dengue infection with non-linear autoregressive model
by: Abdul Rahim, H., et al.
Published: (2011)