System identification of nonlinear autoregressive models in monitoring dengue infection

This paper proposes system identification on application of nonlinear AR (NAR) based on Artificial Neural Network (ANN) for monitor of dengue infections. In building the model, three selection criteria, i.e. the final prediction error (FPE), Akaike's Information Criteria (AIC), and Lipschitz nu...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdul Rahim, H., Ibrahim, F., Taib, M.N.
Format: Article
Language:English
Published: 2010
Subjects:
Online Access:http://eprints.um.edu.my/9348/1/System_identification_of_nonlinear_autoregressive_models_in_monitoring_dengue_infection.pdf
http://eprints.um.edu.my/9348/
http://www.scopus.com/inward/record.url?eid=2-s2.0-79551508977&partnerID=40&md5=0491420521e068f90b645b6f6da2cc77 www-ist.massey.ac.nz/s2is/Issues/v3/n4/papers/paper13.pdf www.s2is.org/Issues/v3/n4/papers/paper13.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.9348
record_format eprints
spelling my.um.eprints.93482017-11-01T05:47:35Z http://eprints.um.edu.my/9348/ System identification of nonlinear autoregressive models in monitoring dengue infection Abdul Rahim, H. Ibrahim, F. Taib, M.N. T Technology (General) TA Engineering (General). Civil engineering (General) This paper proposes system identification on application of nonlinear AR (NAR) based on Artificial Neural Network (ANN) for monitor of dengue infections. In building the model, three selection criteria, i.e. the final prediction error (FPE), Akaike's Information Criteria (AIC), and Lipschitz number were used. Each of the models is divided into two approaches, which are unregularized approach and regularized approach. The findings indicate that NARMAX model with regularized approach yields better accuracy by 80.60. The best parameters' settings for this thesis can be found using the Lipschitz number criterion for the model order selection with artificial neural network structure of 4 trained using the Levenberg Marquardt algorithm. 2010 Article PeerReviewed application/pdf en http://eprints.um.edu.my/9348/1/System_identification_of_nonlinear_autoregressive_models_in_monitoring_dengue_infection.pdf Abdul Rahim, H. and Ibrahim, F. and Taib, M.N. (2010) System identification of nonlinear autoregressive models in monitoring dengue infection. International Journal on Smart Sensing and Intelligent Systems, 3 (4). pp. 783-806. ISSN 11785608 http://www.scopus.com/inward/record.url?eid=2-s2.0-79551508977&partnerID=40&md5=0491420521e068f90b645b6f6da2cc77 www-ist.massey.ac.nz/s2is/Issues/v3/n4/papers/paper13.pdf www.s2is.org/Issues/v3/n4/papers/paper13.pdf
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
language English
topic T Technology (General)
TA Engineering (General). Civil engineering (General)
spellingShingle T Technology (General)
TA Engineering (General). Civil engineering (General)
Abdul Rahim, H.
Ibrahim, F.
Taib, M.N.
System identification of nonlinear autoregressive models in monitoring dengue infection
description This paper proposes system identification on application of nonlinear AR (NAR) based on Artificial Neural Network (ANN) for monitor of dengue infections. In building the model, three selection criteria, i.e. the final prediction error (FPE), Akaike's Information Criteria (AIC), and Lipschitz number were used. Each of the models is divided into two approaches, which are unregularized approach and regularized approach. The findings indicate that NARMAX model with regularized approach yields better accuracy by 80.60. The best parameters' settings for this thesis can be found using the Lipschitz number criterion for the model order selection with artificial neural network structure of 4 trained using the Levenberg Marquardt algorithm.
format Article
author Abdul Rahim, H.
Ibrahim, F.
Taib, M.N.
author_facet Abdul Rahim, H.
Ibrahim, F.
Taib, M.N.
author_sort Abdul Rahim, H.
title System identification of nonlinear autoregressive models in monitoring dengue infection
title_short System identification of nonlinear autoregressive models in monitoring dengue infection
title_full System identification of nonlinear autoregressive models in monitoring dengue infection
title_fullStr System identification of nonlinear autoregressive models in monitoring dengue infection
title_full_unstemmed System identification of nonlinear autoregressive models in monitoring dengue infection
title_sort system identification of nonlinear autoregressive models in monitoring dengue infection
publishDate 2010
url http://eprints.um.edu.my/9348/1/System_identification_of_nonlinear_autoregressive_models_in_monitoring_dengue_infection.pdf
http://eprints.um.edu.my/9348/
http://www.scopus.com/inward/record.url?eid=2-s2.0-79551508977&partnerID=40&md5=0491420521e068f90b645b6f6da2cc77 www-ist.massey.ac.nz/s2is/Issues/v3/n4/papers/paper13.pdf www.s2is.org/Issues/v3/n4/papers/paper13.pdf
_version_ 1643688538790690816
score 13.211869