Biogenic integrated ZnO/Ag nanocomposite: Surface analysis and in vivo practices for the management of type 1 diabetes complications
In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supp...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2020
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/25360/ https://doi.org/10.1016/j.colsurfb.2020.110878 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supported by the results. The efficacy of the derived nanostructure (MTSE/ZnO/Ag) was evaluated in vivo on the basis of its therapeutic effects on the main complications of Type 1 diabetes (hyperglycemia, hyperlipidemia, and insulin deficiency). For this purpose, the changes in the plasma values of fasting blood glucose, total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and insulin in alloxan-diabetic Wistar male rats were compared with those in healthy and untreated diabetic controls after a treatment period of 16 days. The antidiabetic results of MTSE/ZnO/Ag were compared with those obtained from pristine ZnO, MTSE, and insulin therapies. The health conditions of the rats with Type 1 diabetes were significantly enhanced after treatment with MTSE/ZnO/Ag (p < 0.05), which is owing to the enhanced interface structure and participatory functions of the united compartments of MTSE/ZnO/Ag. © 2020 |
---|