Web-based clustering tool using fuzzy k-mean algorithm / Ahmad Zuladzlan Zulkifly
Nowadays, clustering is one of the popular technique to grouping data to make them ease to interpret the result. Some researcher even used clustering to predict weather, natural disaster and many others. This prediction can be made by cluster the new data with the old data and observe where the data...
保存先:
第一著者: | Zulkifly, Ahmad Zuladzlan |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2019
|
主題: | |
オンライン・アクセス: | https://ir.uitm.edu.my/id/eprint/110709/1/110709.pdf https://ir.uitm.edu.my/id/eprint/110709/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Clustering web users based on K-means algorithm for reducing time access cost
著者:: Nasser, Maged, 等
出版事項: (2020) -
Clustering web users for reductions the internet traffic load and users access cost based on K-means algorithm
著者:: Nasser, Maged, 等
出版事項: (2018) -
Analysis of K-Mean and X-Mean Clustering Algorithms Using
Ontology-Based Dataset Filtering
著者:: Rahmah, Mokhtar, 等
出版事項: (2021) -
A web-based implementation of k-means algorithms
著者:: Lee, Quan
出版事項: (2022) -
A Comparative Study Of Fuzzy C-Means And K-Means Clustering Techniques
著者:: Sharifah Sakinah, Syed Ahmad
出版事項: (2014)