The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models
The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties and efficient numerical performance of the existing CG methods. In this p...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | http://eprints.unisza.edu.my/4741/1/FH03-FIK-21-51447.pdf http://eprints.unisza.edu.my/4741/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-unisza-ir.4741 |
---|---|
record_format |
eprints |
spelling |
my-unisza-ir.47412022-01-17T06:42:09Z http://eprints.unisza.edu.my/4741/ The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models Sulaiman, I.M Mamat, M. Waziri, M.Y. Yakubu, U.A. Malik, M. QA Mathematics QA75 Electronic computers. Computer science The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties and efficient numerical performance of the existing CG methods. In this paper, we proposed a new hybrid CG algorithm that inherits the features of the Rivaie et al. (RMIL∗) and Dai (RMIL+) conjugate gradient methods. The proposed algorithm generates a descent direction under the strong Wolfe line search conditions. Preliminary results on some benchmark problems reveal that the proposed method efficient and promising. 2021 Conference or Workshop Item PeerReviewed text en http://eprints.unisza.edu.my/4741/1/FH03-FIK-21-51447.pdf Sulaiman, I.M and Mamat, M. and Waziri, M.Y. and Yakubu, U.A. and Malik, M. (2021) The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models. In: 1st International Conference on Recent Trends in Applied Research, 14-15 Aug 2020, Nigeria, Virtual. |
institution |
Universiti Sultan Zainal Abidin |
building |
UNISZA Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Sultan Zainal Abidin |
content_source |
UNISZA Institutional Repository |
url_provider |
https://eprints.unisza.edu.my/ |
language |
English |
topic |
QA Mathematics QA75 Electronic computers. Computer science |
spellingShingle |
QA Mathematics QA75 Electronic computers. Computer science Sulaiman, I.M Mamat, M. Waziri, M.Y. Yakubu, U.A. Malik, M. The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
description |
The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient
methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties
and efficient numerical performance of the existing CG methods. In this paper, we proposed a new hybrid CG
algorithm that inherits the features of the Rivaie et al. (RMIL∗) and Dai (RMIL+) conjugate gradient methods. The
proposed algorithm generates a descent direction under the strong Wolfe line search conditions. Preliminary results
on some benchmark problems reveal that the proposed method efficient and promising. |
format |
Conference or Workshop Item |
author |
Sulaiman, I.M Mamat, M. Waziri, M.Y. Yakubu, U.A. Malik, M. |
author_facet |
Sulaiman, I.M Mamat, M. Waziri, M.Y. Yakubu, U.A. Malik, M. |
author_sort |
Sulaiman, I.M |
title |
The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
title_short |
The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
title_full |
The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
title_fullStr |
The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
title_full_unstemmed |
The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
title_sort |
convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models |
publishDate |
2021 |
url |
http://eprints.unisza.edu.my/4741/1/FH03-FIK-21-51447.pdf http://eprints.unisza.edu.my/4741/ |
_version_ |
1724079378478923776 |
score |
13.211869 |