The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models
The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties and efficient numerical performance of the existing CG methods. In this p...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.unisza.edu.my/4741/1/FH03-FIK-21-51447.pdf http://eprints.unisza.edu.my/4741/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient
methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties
and efficient numerical performance of the existing CG methods. In this paper, we proposed a new hybrid CG
algorithm that inherits the features of the Rivaie et al. (RMIL∗) and Dai (RMIL+) conjugate gradient methods. The
proposed algorithm generates a descent direction under the strong Wolfe line search conditions. Preliminary results
on some benchmark problems reveal that the proposed method efficient and promising. |
---|