Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery

The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine...

Full description

Saved in:
Bibliographic Details
Main Authors: Md Moshikur, R., Shimul, I.M., Uddin, S., Wakabayashi, R., Moniruzzaman, M., Goto, M.
Format: Article
Published: 2022
Online Access:http://scholars.utp.edu.my/id/eprint/34266/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144506615&doi=10.1021%2facsami.2c15636&partnerID=40&md5=57d340b7a7c3873d70a546a596a84c5b
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:34266
record_format eprints
spelling oai:scholars.utp.edu.my:342662023-01-09T05:23:35Z http://scholars.utp.edu.my/id/eprint/34266/ Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery Md Moshikur, R. Shimul, I.M. Uddin, S. Wakabayashi, R. Moniruzzaman, M. Goto, M. The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems. © 2022 American Chemical Society. 2022 Article NonPeerReviewed Md Moshikur, R. and Shimul, I.M. and Uddin, S. and Wakabayashi, R. and Moniruzzaman, M. and Goto, M. (2022) Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery. ACS Applied Materials and Interfaces, 14 (50). pp. 55332-55341. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144506615&doi=10.1021%2facsami.2c15636&partnerID=40&md5=57d340b7a7c3873d70a546a596a84c5b 10.1021/acsami.2c15636 10.1021/acsami.2c15636 10.1021/acsami.2c15636
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems. © 2022 American Chemical Society.
format Article
author Md Moshikur, R.
Shimul, I.M.
Uddin, S.
Wakabayashi, R.
Moniruzzaman, M.
Goto, M.
spellingShingle Md Moshikur, R.
Shimul, I.M.
Uddin, S.
Wakabayashi, R.
Moniruzzaman, M.
Goto, M.
Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
author_facet Md Moshikur, R.
Shimul, I.M.
Uddin, S.
Wakabayashi, R.
Moniruzzaman, M.
Goto, M.
author_sort Md Moshikur, R.
title Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
title_short Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
title_full Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
title_fullStr Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
title_full_unstemmed Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery
title_sort transformation of hydrophilic drug into oil-miscible ionic liquids for transdermal drug delivery
publishDate 2022
url http://scholars.utp.edu.my/id/eprint/34266/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144506615&doi=10.1021%2facsami.2c15636&partnerID=40&md5=57d340b7a7c3873d70a546a596a84c5b
_version_ 1754532150012542976
score 13.222552