Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review

One of the most essential operational difficulties that water companies face today is the capacity to manage their water treatment process daily. Companies are looking for long-term solutions to predict how their treatment methods may be enhanced as they face growing competition. Many models for bio...

Full description

Saved in:
Bibliographic Details
Main Authors: Altowayti, W.A.H., Shahir, S., Eisa, T.A.E., Nasser, M., Babar, M.I., Alshalif, A.F., AL-Towayti, F.A.H.
Format: Article
Published: 2022
Online Access:http://scholars.utp.edu.my/id/eprint/34003/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142702002&doi=10.3390%2fsu142215353&partnerID=40&md5=819eb28821bd8470931bf2f1c874f940
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:34003
record_format eprints
spelling oai:scholars.utp.edu.my:340032022-12-28T07:44:36Z http://scholars.utp.edu.my/id/eprint/34003/ Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review Altowayti, W.A.H. Shahir, S. Eisa, T.A.E. Nasser, M. Babar, M.I. Alshalif, A.F. AL-Towayti, F.A.H. One of the most essential operational difficulties that water companies face today is the capacity to manage their water treatment process daily. Companies are looking for long-term solutions to predict how their treatment methods may be enhanced as they face growing competition. Many models for biological growth rate control, such as the Monod and Contois models, have been suggested in the literature. This review further emphasized that the Contois model is the best and is more suited to predicting the performance of biological growth rate than the other applicable models with a high correlation coefficient. Furthermore, the most well-known models for optimizing and predicting the wastewater treatment process are response surface methodology (RSM) and artificial neural networks (ANN). Based on this review, the ANN is the best model for wastewater treatment with high accuracy in biological wastewater treatment. Furthermore, the present paper conducts a bibliometric analysis using VOSviewer to assess research performance and perform a scientific mapping of the most relevant literature in the field. A bibliometric study of the most recent publications in the SCOPUS database between 2018 and 2022 is performed to assess the top ten countries around the world in the publishing of employing these four models for wastewater treatment. Therefore, major contributors in the field include India, France, Iran, and China. Consequently, in this research, we propose a sustainable wastewater treatment model that uses the Contois model and the ANN model to save time and effort. This approach may be helpful in the design and operation of clean water treatment operations, as well as a tool for improving day-to-day performance management. © 2022 by the authors. 2022 Article NonPeerReviewed Altowayti, W.A.H. and Shahir, S. and Eisa, T.A.E. and Nasser, M. and Babar, M.I. and Alshalif, A.F. and AL-Towayti, F.A.H. (2022) Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review. Sustainability (Switzerland), 14 (22). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142702002&doi=10.3390%2fsu142215353&partnerID=40&md5=819eb28821bd8470931bf2f1c874f940 10.3390/su142215353 10.3390/su142215353 10.3390/su142215353
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description One of the most essential operational difficulties that water companies face today is the capacity to manage their water treatment process daily. Companies are looking for long-term solutions to predict how their treatment methods may be enhanced as they face growing competition. Many models for biological growth rate control, such as the Monod and Contois models, have been suggested in the literature. This review further emphasized that the Contois model is the best and is more suited to predicting the performance of biological growth rate than the other applicable models with a high correlation coefficient. Furthermore, the most well-known models for optimizing and predicting the wastewater treatment process are response surface methodology (RSM) and artificial neural networks (ANN). Based on this review, the ANN is the best model for wastewater treatment with high accuracy in biological wastewater treatment. Furthermore, the present paper conducts a bibliometric analysis using VOSviewer to assess research performance and perform a scientific mapping of the most relevant literature in the field. A bibliometric study of the most recent publications in the SCOPUS database between 2018 and 2022 is performed to assess the top ten countries around the world in the publishing of employing these four models for wastewater treatment. Therefore, major contributors in the field include India, France, Iran, and China. Consequently, in this research, we propose a sustainable wastewater treatment model that uses the Contois model and the ANN model to save time and effort. This approach may be helpful in the design and operation of clean water treatment operations, as well as a tool for improving day-to-day performance management. © 2022 by the authors.
format Article
author Altowayti, W.A.H.
Shahir, S.
Eisa, T.A.E.
Nasser, M.
Babar, M.I.
Alshalif, A.F.
AL-Towayti, F.A.H.
spellingShingle Altowayti, W.A.H.
Shahir, S.
Eisa, T.A.E.
Nasser, M.
Babar, M.I.
Alshalif, A.F.
AL-Towayti, F.A.H.
Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
author_facet Altowayti, W.A.H.
Shahir, S.
Eisa, T.A.E.
Nasser, M.
Babar, M.I.
Alshalif, A.F.
AL-Towayti, F.A.H.
author_sort Altowayti, W.A.H.
title Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
title_short Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
title_full Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
title_fullStr Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
title_full_unstemmed Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
title_sort smart modelling of a sustainable biological wastewater treatment technologies: a critical review
publishDate 2022
url http://scholars.utp.edu.my/id/eprint/34003/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142702002&doi=10.3390%2fsu142215353&partnerID=40&md5=819eb28821bd8470931bf2f1c874f940
_version_ 1753790782558437376
score 13.223943