Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection

The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities....

Full description

Saved in:
Bibliographic Details
Main Authors: M. Hizam, S.M., Al-Dhahebi, A.M., Mohamed Saheed, M.S.
Format: Article
Published: 2022
Online Access:http://scholars.utp.edu.my/id/eprint/33992/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143632110&doi=10.3390%2fpolym14235125&partnerID=40&md5=93edd05499dc636d090b3a587d68dfcd
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:33992
record_format eprints
spelling oai:scholars.utp.edu.my:339922022-12-28T07:44:15Z http://scholars.utp.edu.my/id/eprint/33992/ Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection M. Hizam, S.M. Al-Dhahebi, A.M. Mohamed Saheed, M.S. The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities. Among the state-of-the-art ammonia detection materials, graphene-based polymeric nanocomposites have gained significant attention. Despite the ever-increasing number of publications on graphene-based polymeric nanocomposites for ammonia detection, various understandings and information regarding the process, mechanisms, and new material components have not been fully explored. Therefore, this review summarises the recent progress of graphene-based polymeric nanocomposites for ammonia detection. A comprehensive discussion is provided on the various gas sensor designs, including chemiresistive, Quartz Crystal Microbalance (QCM), and Field-Effect Transistor (FET), as well as gas sensors utilising the graphene-based polymer nanocomposites, in addition to highlighting the pros and cons of graphene to enhance the performance of gas sensors. Moreover, the various techniques used to fabricate graphene-based nanocomposites and the numerous polymer electrolytes (e.g., conductive polymeric electrolytes), the ion transport models, and the fabrication and detection mechanisms of ammonia are critically addressed. Finally, a brief outlook on the significant progress, future opportunities, and challenges of graphene-based polymer nanocomposites for the application of ammonia detection are presented. © 2022 by the authors. 2022 Article NonPeerReviewed M. Hizam, S.M. and Al-Dhahebi, A.M. and Mohamed Saheed, M.S. (2022) Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection. Polymers, 14 (23). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143632110&doi=10.3390%2fpolym14235125&partnerID=40&md5=93edd05499dc636d090b3a587d68dfcd 10.3390/polym14235125 10.3390/polym14235125 10.3390/polym14235125
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities. Among the state-of-the-art ammonia detection materials, graphene-based polymeric nanocomposites have gained significant attention. Despite the ever-increasing number of publications on graphene-based polymeric nanocomposites for ammonia detection, various understandings and information regarding the process, mechanisms, and new material components have not been fully explored. Therefore, this review summarises the recent progress of graphene-based polymeric nanocomposites for ammonia detection. A comprehensive discussion is provided on the various gas sensor designs, including chemiresistive, Quartz Crystal Microbalance (QCM), and Field-Effect Transistor (FET), as well as gas sensors utilising the graphene-based polymer nanocomposites, in addition to highlighting the pros and cons of graphene to enhance the performance of gas sensors. Moreover, the various techniques used to fabricate graphene-based nanocomposites and the numerous polymer electrolytes (e.g., conductive polymeric electrolytes), the ion transport models, and the fabrication and detection mechanisms of ammonia are critically addressed. Finally, a brief outlook on the significant progress, future opportunities, and challenges of graphene-based polymer nanocomposites for the application of ammonia detection are presented. © 2022 by the authors.
format Article
author M. Hizam, S.M.
Al-Dhahebi, A.M.
Mohamed Saheed, M.S.
spellingShingle M. Hizam, S.M.
Al-Dhahebi, A.M.
Mohamed Saheed, M.S.
Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
author_facet M. Hizam, S.M.
Al-Dhahebi, A.M.
Mohamed Saheed, M.S.
author_sort M. Hizam, S.M.
title Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
title_short Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
title_full Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
title_fullStr Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
title_full_unstemmed Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection
title_sort recent advances in graphene-based nanocomposites for ammonia detection
publishDate 2022
url http://scholars.utp.edu.my/id/eprint/33992/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143632110&doi=10.3390%2fpolym14235125&partnerID=40&md5=93edd05499dc636d090b3a587d68dfcd
_version_ 1753790781046390784
score 13.223943